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Abstract
Rapidly detecting the beginning of influenza outbreaks helps health authorities to reduce their impact. Accounting for the

spatial distribution of the data can greatly improve the performance of an outbreak detection method by promptly detecting

the first foci of infection. The use of Hidden Markov chains in temporal models has shown to be great tools for classifying

the epidemic or endemic state of influenza data, though their use in spatio-temporal models for outbreak detection is scarce.

In this work, we present a spatio-temporal Bayesian Markov switching model over the differentiated incidence rates for the

rapid detection of influenza outbreaks. This model focuses its attention on the incidence variations to better detect the

higher increases of early epidemic rates even when the rates themselves are relatively low. The differentiated rates are

modelled by a Gaussian distribution with different mean and variance according to the epidemic or endemic state. A

temporal autoregressive term and a spatial conditional autoregressive model are added to capture the spatio-temporal

structure of the epidemic mean. The proposed model has been tested over the USA Google Flu Trends database to assess

the relevance of the whole structure.

Keywords Surveillance � Influenza � Outbreak detection � Bayesian � Spatio-temporal � Hidden Markov model �
Markov switching model

1 Introduction

Influenza is a disease that affects millions of people and

causes hundreds of thousands of deaths each year (World

Health Organization 2016). This disease is also the cause of

large amounts of direct and indirect expenses due to health

care costs, absenteeism and other effects of the epi-

demic (Gasparini et al. 2012). For these reasons, surveil-

lance of this viral infection has considerable interest for

health policymakers and, in particular, the early detection

of outbreaks. Among other benefits, detecting the exact

moment when the epidemic begins allows for a better use

of resources. This decreases the morbidity and mortality

while reducing the expense. Influenza surveillance is usu-

ally carried out by screening cases of Influenza-Like-Ill-

ness (ILI), which is generally defined as a set of symptoms,

including fever and some upper-respiratory affection such

as cough and/or sore throat. In this work we interchange-

ably use the expressions ‘influenza surveillance’ and ‘ILI

surveillance’ bearing in mind that, in general, they refer to

the same systems and processes.
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Epidemics of influenza in temperate parts of the planet

have a particular behaviour that shapes the statistical

methods dedicated to their detection. Considering the

temporal dimension, seasonal influenza occurs during the

cold months of the year, but the onset and duration of each

seasonal epidemic are variable and depend on multiple

factors, such as the viral strain properties, the susceptibility

and transmission conditions of the population, and the

climate (Lofgren et al. 2007). Besides the seasonal out-

breaks, other non-stationary influenza epidemics can hap-

pen at any time of the year, usually caused by strains of

virus that jump species from animals to humans. The

particular case of the swine influenza A(H1N1)pdm09

virus was monitored with special attention and led to the

analysis and re-evaluation of several influenza surveillance

strategies (Cook et al. 2011; De Lange et al. 2013; Gomez-

Barroso et al. 2014; Ortiz et al. 2009).

For some time, the detection of influenza outbreaks has

been only based on temporal methods applied to each

region of interest separately. The list of statistical models

proposed to do this detection is large, as reflected in several

reviews (Amorós et al. 2015; Spreco and Timpka 2016;

Unkel et al. 2012). Later on, in the same fashion as done in

other fields such as species distribution (Martı́nez-Minaya

et al. 2018), detection methods have started to combine

spatial tools used in disease mapping and cluster detection

with the temporal methodologies already in use in order to

adapt to the intrinsic spatio-temporal behaviour of influ-

enza spread. The epidemics usually start in one or several

points and spread from them. Therefore, promptness and

sensitivity of the methods can be improved by considering

several time series of counts or rates associated with small

areas instead of only one time series pooling all the areas;

firstly, because the substantial increase in the incidence

rates of some of these locations at the beginning of the

epidemic will not be masked by the aggregation; and sec-

ondly, because the spatial correlation of the spread can be

used to distinguish the epidemic behaviour.

Several approaches have been considered to build spa-

tio-temporal methods for disease surveillance. Spatio-

temporal CUSUM and EWMA models (Rogerson and

Yamada 2004; Zhou and Lawson 2008) can raise an alarm

when finding a mild but persistent shift of the mean rate,

which is a common endemic behaviour of ILI upon the

arrival of the cold months of the year, and this could cause

false alarms. Scan statistics (Kulldorff 2001) usually

require that the potentially detected clusters cover at most

half of the locations considered, but it is usual for influenza

epidemics to cover entire countries or even continents at

some time of the season.

Several temporal methods have been proposed based on

ARIMA models (Cowling et al. 2006; Rao and McCabe

2016). Proper and intrinsic conditional autoregressive

models (Besag et al. 1991) and other spatial structures used

for disease mapping have been combined with these time

series structures for disease surveillance under the fre-

quentist paradigm. But it has been under the Bayesian

paradigm that this kind of combination has been more

prolific. The flexibility of the Bayesian hierarchical models

allows for inference over complex models combining

several different temporal and spatial structures with rela-

tive ease (Martı́nez-Bello et al. 2018). In that way, several

methods have been proposed, usually based on a spatio-

temporal Poisson model. Some of them locate regions with

unusual temporal patterns of incidence (Li et al. 2012;

Mugglin et al. 2002) or predict future incidence taking into

account correlation among several diseases (Corberán-

Vallet and Lawson 2014). Corberán-Vallet and Lawson

(2011) model an endemic Poisson model and use the scaled

surveillance conditional predictive ordinate (a measure of

goodness of prediction) to trigger alarms, and Corberán-

Vallet (2012) extended this to the spatio-temporal

surveillance of several diseases by means of a shared

component model. Rotejanaprasert and Lawson (2016)

consider two components (endemic and epidemic) for the

relative risk and use the Kullback-Leibler distance between

the usual predictive distribution and the predictive distri-

bution ignoring the epidemic component of the risk to

set alarms.

A natural option for the detection of outbreaks by means

of distinguishing an endemic and an epidemic behaviour of

the data is the use of models including latent variables that

allow them to classify observations. Considering that the

endemic and epidemic incidence rates have different

behaviours, two different models can be combined,

allowing the method to select which model offers a better

fit for each time t and each location i. This is achieved by

associating a set of discrete latent variables Zit to each of

the locations and times, with two possible values, 0 or 1,

indicating the non-epidemic or epidemic phase respec-

tively. The values taken by these hidden variables deter-

mine which model (endemic or epidemic) is to be applied

for each observation Yit. One advantage of these latent

variables for decision making is that the estimated proba-

bility of being in the epidemic phase for each time and

location can be inferred from them, by means of their

expected value in the Bayesian paradigm or by their esti-

mated allocation probabilities in the frequentist paradigm

(Grzegorczyk and Shafiee 2017). In this way, the answers

offered by models using these latent variables are richer

than a simple ‘yes’ or ‘no’. The intrinsic temporal structure

of influenza data, where each epidemic week is usually

followed by other epidemic weeks and each non-epidemic

week is usually followed by more non-epidemic weeks,

suggests linking the latent variables using temporal Mar-

kov chains. In this way, each latent variable is
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conditionally dependent only on the previous latent vari-

able in time. Hidden Markov models (HMMs) (Cappé et al.

2005) and Markov switching models (MSMs) (Douc et al.

2004) use hidden Markov chains and are usually seen in

surveillance to model the observations and their associated

latent variables. HMMs consider conditionally independent

observations given the values of the hidden variables while

MSMs also define a conditional distribution for consecu-

tive observations which varies according to the epidemic

state (the value of the hidden variable). The HMMs non-

parametric modelling of temporal variability could show

substantial advantage over some other spatio-temporal

parametric proposals (Torres-Avilés and Martinez-Beneito

2015), which could have problems to describe epidemic

peaks occurring at very different weeks for the different

seasons of study.

HMMs have been applied in very diverse fields such as

financial economics (Bhar and Hamori 2004), computer

vision (Bunke and Caelli 2001), hydrology (Khadr 2016;

Vasas et al. 2007) or biological sequence analysis (Yoon

2009). In the field of temporal surveillance of influenza and

ILI, HMM have been applied both under the frequentist

paradigm (Le Strat and Carrat 1999, Rafei et al. 2015) and

the Bayesian paradigm (Lu et al. 2010; Madigan 2005;

Rath et al. 2003; Sun and Cai 2009), while MSMs have

been used mostly under the Bayesian paradigm (Conesa

et al. 2015; Lu et al. 2010; Lytras et al. 2018; Martinez-

Beneito et al. 2008). Spatio-temporal HMM models have

been more scarce. The proposal of Knorr-Held and

Richardson (2003) has been used for meningococcal

infection surveillance (though not explicitly for outbreak

detection). Another example of a model where the condi-

tional dependence of the hidden variable Zit is not only

temporal but also spatial is found in the work of Banks

et al. (2012). The authors present a theoretical multivariate

Bayesian framework for syndromic surveillance where the

parameter of a Poisson model is defined by an always

present endemic component plus an epidemic component

multiplied by the latent variable so that it is only added for

the epidemic times and locations. The logarithm of each

parameter is modelled by a linear regressor. Particular

cases of this framework of model have been used for the

detection of influenza outbreaks (Heaton et al. 2012; Zou

et al. 2012), indicating that the choices of hyperparameters

represent vague prior information and ensure posterior

propriety. Nevertheless, it can be proven that a simplifi-

cation of these models, where no spatial or spatio-temporal

terms are taken into account, and where improper non-

informative prior distributions are set for the parameters,

has improper posterior distributions for certain parameters

of the model (Amorós 2017). It can be also proven how an

alternative switch model as seen in some other works (Li

et al. 2012) has a proper posterior distribution.

Considering all this, in this work we present a spatio-

temporal Bayesian Markov switching model over the dif-

ferentiated rates. This model does not require strong prior

information to estimate the transition to the epidemic state.

It also does not require a predefinition of the epidemic

periods in the historic data (as some other models do) and

has no spatial coverage limitation. At the same time, this

method benefits from considering the spatial structure of

the data, which allows for a faster detection of the begin-

ning of the outbreak and its location. Additionally, this

model focuses the attention on the jumps of incidence rate

from one week to the next. Paying attention to the beha-

viour of the increases and decreases instead of the size of

the rates is key to improving the promptness of detection

as, at the beginning of an epidemic, the rates are relatively

low and quite similar to those of the endemic phase. It is

the relative behaviour among contiguous rates which can

characterize the moment of the outbreak. Therefore, it is

fundamental to model different temporal and spatial

dependencies of the differentiated data depending on

whether each location is in the endemic or epidemic phase

for each week. As stated before, the use of MSMs is per-

fectly suited for this, being able to detect the moments of

transition from non-epidemic to epidemic periods for each

of the locations.

The remainder of this paper is organized as follows.

After this introduction, Sect. 2 proposes the spatio-tem-

poral Bayesian MSM. Section 3 shows the application of

the model on the USA Google Flu Trends data, and Sect. 4

shows a comparison with several simplifications and vari-

ations of the model, in order to stress the necessity of

several elements of the hierarchical structure. Conclusions

are presented in Sect. 5.

2 The spatio-temporal Markov switching
model for influenza outbreaks detection

In this section we present a novel proposal for the spatio-

temporal detection of influenza outbreaks which can deal

with the behaviour of the spread of influenza outbreaks

while avoiding several drawbacks observed in several

methods in the literature. This method is an extension of a

temporal model presented by Martinez-Beneito et al.

(2008) that can use any data coming from any surveillance

system, provided that the influenza incidence rates are

observed for a discrete and fixed set of locations at equally

spaced times.

Each surveillance system obtains data from a different

source and there is usually a trade-off between how fast

data is obtained from these sources and how specific the

system is (Cheng et al. 2009). Hence, data obtained from

an Internet source such as Twitter can be almost
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immediate, but its specificity would be very low. This is

even more evident if we compare it with a mortality reg-

istry, a very specific system where data can take several

weeks or months to be available. The nature of the data

also varies with the source from which it has been

retrieved. In this way, spatial locations of the data can be

expressed in several ways: individual cases may be asso-

ciated with their home address; individual or aggregated

cases may be assigned to a health care facility—hospitals,

emergency rooms, pharmacies, etc.—or they can be asso-

ciated to an administrative region. All the possibilities can,

in general, be translated to aggregated rates in adminis-

trative regions, which results in spatially discrete support of

the information structured as a lattice, where a neigh-

bouring rule can be established. This last format may in

some cases be coarser, but ensures that almost every spatial

data of any surveillance system can be translated to it.

Therefore, with the intention of making our method as

versatile as possible, we model it to deal with lattice data.

The usual way of reporting data in surveillance systems

is to associate it with discrete and equally spaced times

(days or weeks, usually). If the data is presented for each

time on a lattice support, the result is a set of time series

spatially related. In this line, our proposed dataset for

exemplifying the performance of our proposal is an illus-

trative example of this kind of data (as shown in Fig. 1,

dataset described in detail in Sect. 3.1). But, it is worth

noting that all the methods here presented could be used in

many other similar datasets with the same characteristic.

The remainder of this section has been organized in

subsections reflecting the hierarchical structure of the

model proposed. Moreover, priors have been set up at

every step in order to facilitate comprehension.

2.1 Modelling the differentiated rates

We consider our data to be the first order differentiated

rates of influenza observed on a finite set of locations on a

given neighbourhood graph (lattice data). Usually the

edges are defined by adjacency, where two regions share a

border. Equidistant time points are considered for the

temporal dimension of the data (for example, weekly

rates), which is the usual way of reporting data to

surveillance systems.

In the same line as done in the proposal of Martinez-

Beneito et al. (2008), modelling the differentiated rates

instead of the raw rates themselves allow us to divert the

focus of attention from the magnitude of the rates. This can

be an advantage because, in some cases, using the mag-

nitude of the rates can make difficult the detection of the

beginning of an outbreak, as most start when influenza

rates are still low. Instead of that, the size and behaviour of

the increments of the rates are the distinctive features

which allow to classify each location and time as being in

the epidemic or endemic phase.

For simplicity in the notation, given a location i, we

name yit to the rate in time t (rit) minus the rate in time

t � 1 (rit�1), that is

yit ¼ rit � rit�1; t ¼ 1; . . .; T

where T represents the total number of periods and the time

index for the rates starts at 0 to have the index for the

differences starting at 1. We also denote Zit the variable

that indicates the latent epidemic state for each time and

location, with a value of 1 for the epidemic state and a

value of 0 for the non-epidemic state.

As observed in the lower graph in Fig. 1, the differen-

tiated rates can be seen to show two behaviours, one with

smaller jumps around the zero value and another with

sharper increases or decreases which tend to be followed

by values of the same sign. Therefore, we consider that the

differentiated rates follow a distribution with mean and

variance depending on the epidemic state. Indeed, as in

Martinez-Beneito et al. (2008), we consider it to be

normal:

yit �NðRitZit ; r
2
Zit
Þ : ð1Þ

Finally, it is worth mentioning that another option could

have been to model the logarithm of the rates with a

Gaussian distribution, a common practice in disease

surveillance and disease mapping. Nevertheless, this would

have made difficult the detection of the onset of epidemics.

If we were to compute the logarithms of the rates and then

differentiated them, we would have that our data would be

logðritþ1Þ � logðritÞ ¼ logðritþ1

rit
Þ. In this situation, the model

would only consider the percentage of the growth and not

its magnitude. Doubling the rate would result in the same

value for the response variable, whether the jump on

incidence was from a rate of 20 cases per 100 000 inhab-

itants to 40 (reasonable jump during the non-epidemic

phase) or it was from 2000 to 4000 (more likely during the

epidemic phase).

2.2 The hidden Markov structure
for the epidemic phase Zit

In order to model the two possible phases in which each

location and time can be classified, we consider the set of

binary latent variables Zit in Eq. (1) which indicate the

epidemic state of the process (equal to 1 to indicate epi-

demic phase and equal to 0 to indicate non-epidemic phase)

as a hidden Markov chain for each location. The distribu-

tion of the latent variable Zit for each location i conditioned

to Zit�1 follows a Bernoulli distribution with transition

probabilities common for all times and locations:
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Zit �BerðpZit�11Þ ; ð2Þ

where

pkl ¼ PðZit ¼ ljZit�1 ¼ kÞ ;
pk ¼ PðZi1 ¼ kÞ ;

ð3Þ

with pk being the probabilities for time 1, that is,

Zi1 �Berðp1Þ.
Jeffreys non-informative prior densities for Bernoulli

trials are set for the transition probabilities and for the

initial probabilities:

p00; p11; p0 �Beta
1

2
;
1

2

� �
; ð4Þ

and the rest of probabilities p10, p01 and p1 are obtained by

complementarity. This Markovian structure in time for Zit
could also be induced in space (Green and Richardson

2002). Nevertheless, this would make much more complex

our proposal which is already complex enough. Hence, we

have preferred to induce temporal dependence in a less

complex form as we will see later.

As said before, the variables Zit distinguish the latent

epidemic and non-epidemic states, and their posterior

expected values are estimations of the probabilities of

being in the epidemic state, which are used for declaring

epidemic alarms. This response is not dichotomous and can

be used by the public health authorities to make better-

informed decisions which actually take into account the

uncertainty of the estimation.

2.3 Modelling the mean of the differentiated
rates RitZit

In Eq. 1, the differentiated rates were modelled to follow a

normal distribution with mean and variance depending on

the epidemic state. After defining the latent variables Zit
which indicate this state, let us define the distribution of the

means according to the epidemic state.
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Fig. 1 Map of USA (leaving out Alaska and Hawaii), graph of

neighbourhood defined by adjacency, estimated influenza rates by

Google Flu Trends between 2007 and 2013 and the corresponding

differentiated rates. Highlighted regions: Alabama in red, Arizona in

green, Illinois in blue and Virginia in yellow
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The non-epidemic phase is characterized for jumps on

the rates close to zero. A first approach could be just

leaving the mean of the differentiated endemic rates to be

0, but observation of empirical data shows that there are

non-epidemic weeks where small growths or decreases of

the rates happen for all locations at the same time. This

may be caused by the stationarity of influenza and of some

other respiratory diseases, which raises the expectancy of

notifiers of an imminent outbreak, regardless if an outbreak

will occur or not. In that way, it would be common for

some diseases like the cold to be reported as ILI by prac-

titioners or to cause internet users to perform more

influenza-related queries or post more influenza-related

tweets during autumn and winter. For this reason, we

consider each week t to have a mean value lt0 which is

common to all locations at that week, but different from the

mean of other weeks for fitting the mentioned stational

pattern. No further spatial or temporal structure is consid-

ered for the endemic phase since given lt0 we would

expect the differentiated rates belonging to the endemic

phase to be distributed as random noise around its mean.

In order to characterize the epidemic phases, we used

three features of the expected value of the differentiated

rates, namely its expected spatial and temporal correlation,

and the higher structured variability for that state.

Firstly, the epidemic phase is modelled with a more

complex temporal structure than that of the endemic phase

as we expect to find that behaviour in data. It is expected

for a region in the epidemic state to show several positive

jumps (differentiated rates) until reaching the peak of the

epidemic, and then the jumps become negative whereas the

rates decrease again to the endemic level. Therefore, we

would expect the differentiated rates for each location in

the epidemic state to be temporally dependent.

The second expected behaviour caused by the conta-

gious nature of influenza is that if one region has epidemic

growths on its incidence rates, people of neighbouring

regions will become infected and those regions will be

expected to show similar growths. As a consequence, we

model the mean of the differentiated rates by a term lt1,
common for all the locations (the overall epidemic rate for

that week) but different for each time, plus a temporal auto

regressive structure of order 1 on the observations for each

location with parameter q, plus a spatial intrinsic condi-

tional auto regressive (ICAR) model (Besag et al. 1991) for

each time. In this way, those means reflect the temporal and

spatial dependence that we expected them to show.

The third feature which helps to characterize the epi-

demic phase is the higher structured variability of the data,

as the jumps shown by the epidemic phase tend to be

bigger (in the positive or negative direction) than those in

the endemic phase. This higher structured variability comes

from the higher variability of the epidemic mean of the

normal distribution in Eq. 1 given by the common terms

for each time unit, the temporal autoregressive structure

and the spatial ICAR term.

As a result, the mathematical expressions for the mean

of both endemic and epidemic periods are:

Rit0 ¼ lt0 ;

Rit1 ¼ lt1 þ qyit�1 þ wit ;
ð5Þ

with wit being the ICAR term. Let us describe each of these

components of both states in more depth:

2.3.1 The common term for each time unit lt0 and lt1.

As stated before, the common term of the endemic phase

lt0 can capture the mild common seasonality of non-epi-

demic ILI. In the case of the epidemic season, lt1 models

the common rise or fall of the rates during the epidemic. In

both cases, these terms model the weekly consensus along

all the states in the same epidemic phase, which in general

is positive in ascending phases (before the epidemic peak)

and negative in descending phases (after the epidemic

peak). We consider lt0 and lt1 as two random effects over

time, with larger variability for lt1, as common rises or

falls of the epidemic phase are expected to be larger than

those of the endemic phase. In order to avoid identifiability

problems with the main unstructured variability r2Zit of the

main distribution, we set the standard deviations of the two

random effects to be proportional to those of the main

distribution. We can express the modelling of the common

temporal terms as follows:

lt0 �Nð0; r2l0Þ ;
lt1 �Nð0; r2l1Þ ;

ð6Þ

where k is the estimated proportion factor and a is a

hyperparameter to be set by the modeller expressing a

vague prior knowledge. For example, a ¼ 100 would be a

possible choice, as it is highly unlikely that this part of the

structured variability is so much larger than the unstruc-

tured one.

2.3.2 The autoregressive structure in the epidemic mean.

During the epidemic state of influenza, it is common to

observe a rise in the rates during several weeks and, after

reaching the peak, a decline in the rates that also lasts

several weeks. The autoregressive structure on the growths

is able to fit this behaviour.

To ensure the stationarity of the autoregressive process

we must bound the parameter q to the interval ½�1; 1�.
Anyhow, considering that the correlation between subse-

quent growths in the epidemic phase is expected to be

positive (differentiated rates will be positive in general
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during several weeks until reaching a peak and then they

will be mostly negative for some more weeks), in practice

we can restrict the interval to [0, 1]:

q�Unif 0; 1ð Þ : ð7Þ

To ensure that the variance of yi1 is equal to the stationary

variance of the series fyitg1t¼1, the Expression (1) for the

first week is modified as follows:

yi1 �N Ri1Zi1 ;
r2Zit

1� Zi1q2

� �
: ð8Þ

This type of correction has been introduced, for example,

in some works in the context of spatio-temporal disease

mapping (Martinez-Beneito et al. 2008).

2.3.3 The ICAR structure in the epidemic mean wit .

We have seen how the autoregressive structure models

similar jumps for consecutive times for each location

during the epidemic phase. In an analogous way, the ICAR

structure induces spatial dependence in the epidemic phase.

Clusters of locations where influenza is spreading show

growths on rates that have that spatial dependence, while

neighbouring regions where the disease has not extended

yet adapt better to the absence of any spatial structure

(endemic state). This behaviour is theoretically expected

due to the infectious nature of influenza, but it has also

been empirically suggested (Fox and Dunson 2015). In

their work, Fox and Dunson (2015) propose a Bayesian

non-parametric covariance regression, which allows the

variance matrix in a multivariate regression model to vary

with the predictors among time. The model is exemplified

with an application on USA Google Flu Trends (2017) data

between 2003 and 2009 (more details about this data

source in Sect. 3.1). The application does not assume any

prior spatial structure but the estimated posterior correla-

tion matrices among regions for each week show it. In

addition, the estimated correlation values are higher during

the epidemic weeks and lower on non-epidemic weeks,

confirming the appropriateness of our proposal.

Our proposal is that the terms wit for a given week t

follow a joint ICAR distribution as follows:

witjw�it �N

P
j� i wjt

ni
;
r2w
ni

 !
; ð9Þ

with j� i meaning locations i and j are neighbours, w�it ¼
fwjt : j 6¼ ig and ni being the number of neighbours of

location i. The ICAR joint distribution is improper and an

additional restriction of sum to zero,
P

i wit ¼ 0, is usually

added in order to be able to do inference.

We set a non-informative prior for the common condi-

tional standard deviation of wit:

rw �Unifð0; bÞ ; ð10Þ

with b a hyperparameter to be fixed by the modeller

expressing a vague prior knowledge, for example, any

value above the highest differentiated rate in absolute

value.

Note that the wit do not really reproduce spatio-temporal

dependence. Instead, they are a collection of temporally

independent spatial patterns. Pure spatio-temporal depen-

dence patterns could be used for defining w (Knorr-Held

2000; Martinez-Beneito et al. 2008; Adı́n et al. 2017).

Nevertheless, as for Zit, this would introduce further

complexity in our already complex proposal so we have

preferred to avoid that possibility.

2.4 Modelling the variance of the differentiated
rates r2Zit

We have seen that one important aspect for the discrimi-

nation between epidemic and non-epidemic phases in our

proposal is the behaviour of the expected value of the

differentiated rates, its spatial and temporal correlation and

the higher structured variability for the epidemic state.

Another feature that helps characterize the epidemic phase

will be the unstructured variability.

In general, differentiated rates are centred in zero,

therefore, though the behaviour of the mean of the response

variable gives important information to distinguish

between epidemic and endemic phases, the behaviour of

the variance of the data is critical for this task. The jumps

of the rates on the non-epidemic state are relatively small

in absolute value, while the growths or decreases of the

rates on the epidemic state are usually larger. A wider

variance on the differentiated rates is therefore expected for

the epidemic state.

Characterizing the epidemic state by a higher variance

has been successfully done on the differentiated

rates (Martinez-Beneito et al. 2008) and on the raw rates

(Nunes et al. 2013). In some spatio-temporal proposals the

extra variance of the data on the epidemic phase is mod-

elled by the extra variance of the added spatio-temporal

structure (Heaton et al. 2012; Zou et al. 2012). In our case,

besides the structured noise that is fitted by the spatio-

temporal term for the mean, we also consider an unstruc-

tured noise in the epidemic phase, getting a combination of

structured and unstructured noise in the fashion of the

popular Besag, York and Mollie’s model (Besag et al.

1991). We also ensure that the unstructured noise of the

epidemic phase is higher than that of the endemic phase,
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emphasizing the importance of the variance as a tool for

classification and avoiding the interchangeability of these

terms.

Therefore, we model the unstructured variability of the

two phases by obtaining both standard deviations from a

uniform prior and ensuring that they are ordered:

r0 ¼ minðh1; h2Þ ;
r1 ¼ maxðh1; h2Þ ;

ð11Þ

with c a hyperparameter to be set by the modeller

expressing vague prior knowledge. Setting c as a value

above the largest differentiated rate in absolute value is a

sensible choice, as suggested before for the ICAR structure.

2.5 The complete model

For clarity in the understanding of the proposed method,

we present again all the previously introduced components

which make up the hierarchical model:

yit �NðRitZit ; r
2
Zit
Þ ;

Rit0 ¼ lt0 ;

Rit1 ¼ lt1 þ qyit�1 þ wit ;

q�Unif 0; 1ð Þ ;
r0 ¼ minðh1; h2Þ ;
r1 ¼ maxðh1; h2Þ ;
rl0 ¼ kr0 ;

rl1 ¼ kr1 ;

3 Application of the model

This section describes the USA Google Flu Trends data-

base and shows an application of the proposed spatio-

temporal model on this database, stressing the difference

between the retrospective and real-time (online) applica-

tion of the method and showing a comparison of the

method with several simplifications and variations and with

the temporal model by Martinez-Beneito et al. (2008).

3.1 The USA Google Flu Trends data

The automated collection of data from search engines

provides almost immediate large amounts of data from vast

populations and territories without the purposeful collab-

oration of the individuals. This is the case of Google Flu

Trends, a web tool which provides estimates of influenza

incidence through the application of an algorithm on

Google queries (Ginsberg et al. 2009). In particular, the

data we are using to illustrate our proposal is the USA

Google Flu Trends (USA GFT), consisting of weekly

estimates of influenza incidence for the 48 spatially con-

nected states of the USA plus Washington, D.C., between

2007-12-02 (48th week of the year) and 2013-01-20 (3rd

week of the year). These estimated rates are a proxy of the

reported influenza rates by the CDC. While publicly

available data by the CDC was aggregated in 10 regions,

the USA GFT offers data segregated by states. Raw and

differentiated incidence rates (our proposal directly models

the differentiated rates, see Sect. 2.1) of the USA GFT

dataset and the vicinity structure considered are shown in

Fig. 1. Four of the 49 chains are highlighted in different

colours as examples.

There has been some debate about the quality of the data

given by Google Flu Trends. After the A(H1N1)pdm09

epidemic on 2009, it became clear that the behaviour of the

search engine users is not stable and the algorithm needed

to be re-evaluated and adjusted (Cook et al. 2011). In fact,

the algorithm for the USA was reassessed in 2009, 2013

and 2014 (Olson et al. 2013). Currently, data is available at

the website but the algorithm does not offer new estima-

tions since August 19th, 2015. In any case, though the data

might not be narrowly accurate for some weeks in com-

parison to some of the CDC published incidence rates, this

dataset is realistic and perfectly suited for illustrative

purposes.

3.2 Retrospective estimates of the epidemic
phase in space and time

We can distinguish two different ways of applying a

detection method over a certain dataset according to

whether the data is considered to be available all at once or

not. The first case is a retrospective application, where the

model is applied once using all the data. The second case is

a prospective or ‘online’ application, where the model is

applied several times, consecutively adding each time the

data from one week, as it would happen in a real surveil-

lance system, where each week the method would be

reapplied adding the most recently collected data. The real

use of a detection method is prospective, but the retro-

spective application is computationally cheap and can offer

a proxy of its performance which can be used for its

evaluation.

As a first approach to evaluate the performance of the

spatio-temporal model on the USA GFT data described

above, we show the results of a retrospective application of

our model. This and all subsequent inference processes in

this work were carried out using WinBUGS (Lunn et al.

2000), running a process with 2 chains with 5 000 itera-

tions of burning and 5000 subsequent iterations for each

chain. After thinning, 1000 iterations were kept, 500 from

each chain. Convergence was checked by observing the
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effective sample size, the R̂ statistic (Gelman et al. 2013)

and visual check of the chains of simulations. The con-

sistent convergence of the model has been further checked

by running the model with a considerably larger amount of

iterations (2 chains with 50 000 burning iterations and

100 000 subsequent iterations for each chain), observing

only small differences in the posterior means and variances

that can be attributed to the MCMC error. The code of the

model can be found in Appendix 1 in Supplemental

Material.

In Fig. 2 one can observe the estimated posterior prob-

ability of the epidemic phase (posterior expected values of

the latent variables Zit) for four randomly chosen states of

the 49 possible ones which we use as an example from now

on (Alabama, Arizona, Illinois and Virginia). In Appendix

2 in Supplemental Material, all estimates for the 49 states

are displayed. The retrospective detection of the epidemic

phase shows a sensible behaviour that appears to give

a high probability of epidemic to those weeks with steep

growth or decay around the peak of the epidemic for each

season.

In Table 1 the posterior mean and 95% credible interval

for the most relevant parameters of the model are shown;

the histograms and density plots for the simulated samples

from the posterior distributions for these parameters are

shown in Fig. 3. The high values of p00 and p11 indicate, as

is expected, that weeks in a certain phase tend to be fol-

lowed by weeks of the same phase. The standard deviations

associated with the endemic phase, r0 and rl0, take notably
lower values than those of the epidemic phase, r1, rl1 and
rw. This indicates that the variance of the differentiated

rates is a key point for the classification of the two states of

the Markov chain. It is also worth noting how a large part

of the epidemic variability is captured by rw, which indi-

cates the importance of the spatial structure to capture the

spatial behaviour of the data. All the credible intervals are

quite narrow, which is an indicator of the identifiability of

all the parameters of the model.

3.3 Online application of the model

In a realistic application of the spatio-temporal proposal in

a surveillance system, the estimates of the epidemic phase

would have been obtained week by week. Therefore, for

each week data from only that and previous weeks (but not

following ones) would be used to estimate the epidemic

states. To reproduce this realistic behaviour one must apply

the model in an online basis, that is, running the model

once per week excluding posterior data to do the inference.

Figure 4 compares the posterior probability of epidemic for

the last season of the USA GFT data for the four states used

as an example previously mentioned.

The results of both ways of applying the model are

similar, though the online lines of estimates tend to be

slightly less smooth. This behaviour is not surprising, as

the retrospective way of applying the method can use

information from posterior weeks when estimating the

phase, while the online application can not.

Figure 5 shows maps of the estimated posterior proba-

bility of being in epidemic phase for some of the weeks of

the last season when applying the model on an online basis.

One can appreciate how the model makes a sensible esti-

mation of the spread of the outbreak, which starts from the

south and east of the United States and ends up covering

the whole country.

4 Comparison with alternative proposals

In order to evaluate the relevance of the proposed spatio-

temporal model, in this section we show a comparison of

the new proposal with two simplifications of that proposal,

one variation and the temporal model of Martinez-Beneito

et al. (2008) (from now on, M-B 2008) on which the above

proposal is based.

4.1 Simplifications and variations of our
proposals

Here we describe the two simplifications and the variation

we are going to compare our spatio-temporal proposal

with. We also explain how we apply the M-B 2008 model

over the GFT spatio-temporal data.

Removing the spatial component The first proposed

simplification consists in removing the structured spatial

random effect, the intrinsic CAR component, from the

modelling of the epidemic phase. To do so, the lower

equation in Expression (5) loses the wit term. The modified

expression is as follows:

Rit0 ¼ lt0
Rit1 ¼ lt1 þ qyit�1 :

ð12Þ

Thus, the prior structure of this model would not induce

spatial dependence at all. By comparing this simplification

with the original novel proposal one can assess how the

assumption of similar growths of incidence among neigh-

bours in epidemic phase affects the fitting and the phase

classification.

Removing lt0. As it is indicated in Sect. 2.3.3, the term

lt1 for the epidemic phase is needed for fitting the evident

overall time trend of this phase. Hence the term lt0 is

added to the model to capture the mild common jumps on
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the endemic phase, but also thinking that it brings balance

of complexity among the regressors of the epidemic and

endemic phases, preventing an excessive sensitivity of the

model. To check that this choice is appropriate, the second

simplification we consider consists in fixing lt0 ¼ 0 for all

endemic observations. Expression (5) for this modification

becomes now as follows:

Rit0 ¼ 0

Rit1 ¼ lt1 þ qyit�1 þ wit :
ð13Þ

Also, as rl0 is no longer present in the model, k is no

longer needed for ensuring identifiability of the parameters.

Therefore, Expression (6) is substituted by the following,

so that lt1 has a variance that is conditionally independent

of r0 and r1:

lt1 �Nð0; r2l1Þ ð14Þ

The hyperparameter d is set to a value above the largest

differentiated rate (in absolute value), as suggested in

Sects. 2.3 and 2.4.

Leroux. The variation of the model we compare the new

proposal with here consists of the substitution of the ICAR

term on the epidemic regressor by the spatial structure

proposed by Leroux et al. (2000). Expression (5) remains

the same, but in this case, the definition of the conditional

distribution of the terms witjw�it is set as a Normal
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Fig. 2 Retrospective estimated probability of being in epidemic phase by the spatio-temporal model on USA GFT data for 4 states. In black:

weekly estimated influenza incidence per 100 000 inhabitants during seasons from 2007–2008 to 2012–2013
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distribution with conditional mean and variance as those

expressed in the work of Leroux et al. (2000). The condi-

tional distribution of the Leroux effect is described as

follows:

witjw�it �N
/

1� /þ /ni

X
j� i

wjt;
r2w

1� /þ /ni

 !

/�Unifð0; 1Þ :
ð15Þ

Taking into account that / is bounded between 0 and 1,

one may notice the following: the mean of the conditional

distribution monotonically increases with /, while the

variance decreases as / gets bigger (except when ni ¼ 1,

where the variance is constantly r2w). In the limit cases, the

distribution is that of an unstructured random noise with 0

mean and variance equal to r2w when / ¼ 0 and an ICAR

distribution, with mean equal to 1
ni

P
j� i wjt and variance

equal to
r2w
ni
, when / ¼ 1. All intermediate values of / result

in a set of Gaussian conditional distributions with mean

and variance values in between. In that way, the parameter

/ distributes the variability of the Leroux term between

spatially structured and unstructured variability. We com-

pare our proposal with this variation to check if the ICAR

term forces a too strong spatial relation which the Leroux

model could be able to soften.

M-B 2008 This purely temporal model is independently

run for each of the 49 locations of the USA GFT data set,

so no information (whether spatial or otherwise) is shared

among them. The comparison with this model indicates the

relevance of the spatio-temporal modelling against the

purely temporal modelling which does not share informa-

tion among different geographic units at all.

Table 1 Posterior mean and 95% credible interval for the parameters

of the spatio-temporal model applied on the USA GFT data in a

retrospective basis

Parameter Posterior mean 95% Credible interval

p00 0.95 [ 0.95, 0.96 ]

p11 0.89 [ 0.87, 0.90 ]

r0 85.00 [ 82.99, 87.01 ]

r1 430.89 [ 404.70, 458.70 ]

rl0 127.61 [ 116.60, 138.40 ]

rl1 646.69 [ 583.28, 701.00 ]

rw 770.10 [ 716.90, 822.70 ]

q 0.35 [ 0.31, 0.38 ]

k 1.50 [ 1.38, 1.62 ]

sigmapsi rho lambda

sigma1 sigmamu0 sigmamu1

p00 p11 sigma0

650 700 750 800 850 0.30 0.33 0.36 0.39 1.3 1.4 1.5 1.6 1.7

400 425 450 475 110 120 130 140 150 550 600 650 700

0.945 0.950 0.955 0.960 0.87 0.88 0.89 0.90 0.91 83 85 87
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Fig. 3 Posterior histograms and density plots for the parameters in the model, applied retrospectively, for the USA GFT data
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4.2 Comparison of estimated parameters
and epidemic phases

In order to give an insight into how the different versions

considered alter the detection of the epidemic phase, ret-

rospective inference on the USA GFT dataset was carried

out using each model. Calculations were performed in an

Intel� CoreTM CPU I7–3770 with 4 cores at 3.40GHz and

8Gb of RAM, with OS Windows 7 Professional 64 bits.

Table 2 shows computation time in minutes for the spatio-

temporal proposal and its variations. The greatest differ-

ence in terms of computational time is observed between

the new proposal and the M-B 2008 model, which runs

over three times faster. All observed computational costs

are affordable if the model is to be run once a week in a

real surveillance system.

Figure 6 displays the estimated posterior probability of

being in the epidemic phase for the retrospective applica-

tion of the spatio-temporal proposal, its variations and the

M-B 2008 model for four of the locations. The same graph

for all the locations is depicted in Appendix 3 in Supple-

mental Materials. The estimated posterior mean for the

principal parameters of the models are shown in Table 3.

Taking a look at the yellow line in Fig. 6, one can

observe how the detection of the simplification without lt0
is consistently higher than the rest. The higher posterior

estimated mean for p11, shown in Table 3, also indicates

the higher sensibility and lower specificity of this simpli-

fication. As it was conjectured, excluding lt0 gives

an advantage to the epidemic structure over the non-epi-

demic structure to be able to adapt to the data, and this

raises the number of weeks classified as epidemic.

The red line represents the detection when removing the

spatial dependence, that is, when not considering an ICAR

component for the epidemic phase. The layout of this red

line is similar to that of the blue line, which represents the

novel spatio-temporal proposal, but with lower values in

certain weeks. Contrary to the model without spatial

component, the model with spatial component can use the

information about the epidemic state of the neighbours to

raise the probability of epidemic on these weeks. It seems

that the addition of the spatially structured component

helps with the correct classification of these weeks as

epidemic ones thanks to the sharing of the information with

neighbours. Observing the estimates for the means of the

parameters in Table 3, one can see how the variability that

rw can not capture (because it is absent) is split among the

other two variance terms of the epidemic phase; r1 and rl1,
increasing the error term of the epidemic phase.

The detection performance of the Leroux model is

almost the same as that of the original proposal, as it is

shown by the almost complete superposition of the blue

and grey lines. The estimated mean of the parameters is

quite similar, with the notable exception of the variances

for the epidemic phase. As can be appreciated in Table 3,

part of the non-spatial variability modelled in r1 in the

spatio-temporal proposal moves to rw in the Leroux model,

which is a parameter that captures both spatially structured

and unstructured variability. The parameter / indicates that

spatial dependence in the data could be milder than that

induced by the ICAR distribution. One slight advantage of

the Leroux model is that it offers more freedom to decide

the variance of the random effects for the mean rl0 and

rl1. This is so because the unstructured variability is split

among r1, which directly affects the value of rl1, and rw,
which does not. Thus, overall, we consider the spatial

modelling with a spatial Leroux’s proposal a competitive

option, although for / � 0 some problems of identifiability

may arise between the mean and the error term of the

epidemic phase. So, some more work is due on the use of

this proposal.

The M-B 2008 model, represented in green, also shows

important differences in the classification of epidemic

states as compared to the rest of spatio-temporal models.

This shows the evident benefit of sharing information

among various regions, even if the neighbouring structure

is not taken into account (as is the case of the model

without the ICAR component).
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Fig. 4 Comparison of the online and retrospective estimated probability of being in epidemic phase by the spatio-temporal model on USA GFT

data for four states. In black: weekly estimated influenza incidence per 100 000 inhabitants during season 2012–2013
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4.3 Comparison of the predictive performance

After validating the relevance of all the components of our

proposal, we move now to validate it in terms of its pre-

dictive behaviour against the other variations of our

detection method. When comparing detection methods, a

first approach one can consider is assessing the sensitivity,

specificity and timeliness of the models, which requires a

gold standard. Obtaining a reliable gold standard is not

Season 6 Week 15 Season 6 Week 17

Season 6 Week 19 Season 6 Week 21

Season 6 Week 23 Season 6 Week 25

[0,10)%
[10,20)%
[20,30)%
[30,40)%
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[80,90)%
[90,100]%
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[1500,2000)
[2000,2500)
[2500,3000)
[3000,3500)
>3500

Fig. 5 Online estimated probability of being in epidemic phase by the spatio-temporal model on USA GFT data (green-red scale). Weeks 15, 17,

19, 21, 23 and 25. Contours in purples: GFT reported influenza incidence per 100 000 inhabitants

Table 2 Computational cost in minutes for the spatio-temporal model

applied on the USA GFT data in a retrospective basis (reference), its

variations and the M-B 2008 model

Reference Removing ICAR Removing lt0 Leroux M-B 2008

64 40 38 55 19

Stochastic Environmental Research and Risk Assessment (2020) 34:275–292 287

123



www.manaraa.com

0

2000

4000

6000

8000

10000

12000

0

1A
la

ba
m

a

0

2000

4000

6000

8000

10000

12000

0

1A
riz

on
a

E
st

im
. p

ro
b.

 o
f e

pi
de

m
ic

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

W
ee

kl
y 

ra
te

s 
   

   
   

   
   

   
   

   
   

   
   

   
   

   
 

0

2000

4000

6000

8000

10000

12000

0

1

Ill
in

oi
s

0

2000

4000

6000

8000

10000

12000

0

1

New proposal
New pr. without ICAR
New pr. without mu
New pr. with Leroux
Martinez−Beneito 08

V
irg

in
ia

Fig. 6 Estimated probability of being in epidemic phase by the spatio-temporal model, its variations and the M-B 2008 model on USA GFT data

for 4 states. In black: weekly estimated influenza incidence per 100 000 inhabitants during seasons from 2007–2008 to 2012–2013

Table 3 Comparison of the

estimated mean for the

parameters of the spatio-

temporal model applied on the

USA GFT data in a

retrospective basis and its

variations, and the average

value of the mean for the

parameters of the M-B 2008

model applied separately on the

49 temporal strains of data of

each state. Reference denotes

the novel model proposed in

Sect. 2

Param. Reference Without ICAR Without lt0 Leroux M-B 2008

p00 0.95 0.96 0.94 0.95 0.95

p11 0.89 0.88 0.92 0.87 0.89

r0 85.00 88.27 92.75 84.45 126.78

r1 430.89 712.33 390.94 259.51 935.40

rl0 127.61 118.72 – 153.39 –

rl1 646.69 958.09 418.72 469.81 –

rw 770.10 – 582.51 930.34 –

q 0.35 0.39 0.36 0.36 0.51

k 1.50 1.34 – 1.82 –

/ – – – 0.59 –
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trivial and different approaches present different problems.

Constructing a simulated data set would require a gener-

ating spatio-temporal model capable of reproducing the

influenza behaviour. Due to the particular spatio-temporal

behaviour of influenza, constructing such a generating

model is far from trivial, and different proposals can result

in very different outcomes of the validation. Another

approach would be to use an arbitrary threshold over the

laboratory virus isolations (Cowling et al. 2006), but dif-

ferent thresholds can also give inconsistent validatory

outcomes, and this kind of data is not always available.

When a gold standard is not available, as is the case here,

other approaches should be adopted. An interesting option

used in some works (Boyle et al. 2011) is the comparison

of the predictive power of the models. As all models in the

comparison have the latent variables Zit in their formula-

tion, the posterior probability for these latent variables in

all the models is the estimated probability of being in the

epidemic phase. It seems sensible to assume that a model

that gives better prediction for the differentiated rates will

also give better estimates for the latent variable, from

which they directly depend. Therefore the predictive per-

formance can be sensibly used as an indirect measure of the

quality of the state classification for any observation. This

method has the virtue of not depending on any arbitrary

definition of what is epidemic and what is not.

Approximate cross-validatory predictive assessment

(Marshall and Spiegelhalter 2003) was performed to eval-

uate the predictive power of the methods. This is a com-

putationally cheaper alternative to the full leave-one-out

cross-validatory assessment where the model is run only

once instead of once per removed observation. Prediction

for each region i was calculated ignoring the estimate of

the parameter wit but taking into account the estimated

parameters of the neighbours wjt (with j� i). This process

was done for each week on an online basis, doing predic-

tion using only data from the same or previous weeks. In

order to do the approximate cross-validatory predictive

assessment, a measure of the discrepancy between pre-

dictions and observed values is needed. As all the models

in the comparison are defined under the Bayesian para-

digm, predictions are expressed as probability distributions

and not as punctual estimates. For this reason, in order to

evaluate the goodness of the predictions in comparison to

the observations, the Continuous Rank Probability Score

(CRPS) was used (Gneiting and Raftery 2007). CRPS is a

measure of discrepancy between a probability distribution

and any observed value which considers not only the

posterior expected value of a distribution but also its pre-

cision and shape to calculate the distance between the

prediction and the observation, offering lower scores for

better predictions.

Figure 7 shows the average CRPS of the cross-valida-

tory predictive assessment for all 49 locations and each

week of season 2012–2013 for the new spatio-temporal

proposal, its variations and the M-B 2008 model. This

cross-validatory predictive assessment has been performed

applying each one of the models on an online basis for all

the weeks of this last season. The graph at the bottom of

that same figure shows a detail of the first 15 weeks, where

most locations are classified as endemic. We can observe

that the new proposal, depicted in blue, offers the best

(lowest) scores of CRPS both in the first weeks, where the

majority of the states are in the endemic phase and in the

last weeks, where the majority of locations are in the epi-

demic phase. The red line, representing the model without

spatial structure, shows almost equivalent scores in the first

weeks, as should be expected; as for the non-epidemic

observations the spatial component is not present. The

suppression of the ICAR term in the epidemic linear

regressor, though, results in worse scores in the last weeks.

The same phenomenon, but much milder, happens with the

model that substitutes the ICAR structure for a Leroux

structure, represented by the grey line. The quality of the

prediction is close to that of the new proposal, but some-

what worse for the epidemic weeks. The model represented

by the yellow line differs from the original novel proposal

only in the non-epidemic regressor, which is modelled

without the lt0 term. For this reason, the most visible

differences are in the first weeks, as their behaviour is not

well captured by the simplified model. The M-B 2008

model, shown in green, gives the worst values among all

the compared models both in the first and last weeks. This

indicates that sharing information among locations is

important to correctly model both endemic and epidemic

weeks in a spatio-temporal context.

5 Conclusions

In this work we have presented a spatio-temporal hierar-

chical Markov switching model for the early detection of

influenza outbreaks, shown its application and checked its

relevance by comparing it with some variations and with

the purely temporal model of Martinez-Beneito et al.

(2008).

In the comparison, the purely temporal model for out-

breaks detection of Martinez-Beneito et al. (2008) showed

a worse performance than our proposal or any of its vari-

ations. This demonstrates the superiority of using a spatio-

temporal approach over the separate analysis of several

time series for a certain set of regions. Even the modifi-

cation of our proposal without a structured spatial com-

ponent performed notably better than the purely temporal

approach. This suggests that detection for all the regions is
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benefited by sharing information about the temporal

parameters of each time series and about the overall

behaviour of all regions over time.

Furthermore, the way influenza epidemics spread sug-

gests that people in neighbouring regions tend to infect

each other. Indeed, the use of spatially structured terms

(like the ICAR or the Leroux models) in combination with

temporal global and local structures improves the perfor-

mance of the detection models. Our modelling proposal for

the detection of influenza outbreaks has therefore proven to

be valid by demonstrating the relevance of its components

to adequately capture the different aspects of the spatio-

temporal evolution of influenza data.

Other advantages of this new proposal come from how

these spatio-temporal structures are embedded in a MSM.

The use of latent variables for the classification of the

observations as endemic or epidemic allows for the new

proposal to detect epidemics that start at several foci at

different times and extend to all the locations considered.

Also, no assumption of the epidemic or endemic state of

the training data is required, and the output of the model is

directly interpretable as the probability of being in the

epidemic state for each time and location.

To summarize, our interest in this study has been to

describe a spatio-temporal methodology for the detec-

tion of influenza outbreaks at the very moment of their

onset. Results show the relevance of using a method which

takes into account both temporal and spatial structures of

the data, as the one described does, for a better perfor-

mance of surveillance systems.
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Rubén Amorós1,2 • David Conesa2,3 • Antonio López-Quı́lez2,3 • Miguel-Angel Martinez-Beneito4,5

1 School of Mathematics, University of Edinburgh, The King’s

Buildings, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK

2 Valencia Bayesian Research Group, Valencia, Spain

3 Departament d’Estadı́stica i Investigació Operativa,
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